Удельный вес меди и медных сплавов. Удельный вес алюминия Плотность алюминия м3

Расчет удельного веса меди

Как известно, за последние сотни лет прогресс шагнул достаточно далеко, что, в свою очередь, позволило развиваться многим отраслям промышленности по всему миру. Не осталось в стороне и металлургическое производство, так как наука подарила этой отрасли множество технологий, методик расчета и в том числе возможность измерения удельного веса металлов.

Поскольку различные медные сплавы различны по своему составу, а также по физическим и химически свойствам, это дает возможность для каждого изделия или детали подбирать необходимый сплав. Для расчета веса требуемого для производства проката, необходимо знать удельный вес соответствующей марки.

Формула для измерения удельного веса металла

Удельным весом называется отношение веса P однородного металла из определённого сплава к объёму этого сплава. Обозначается удельный вес символом γ и его ни в коем случае нельзя путать с плотностью. Хотя значения плотности и удельного веса как меди, так и других металлов очень часто одинаковы, стоит помнить, что это действительно не во всех условиях.

Таким образом, для расчета удельного веса меди используется формула γ=Р/V

А для расчета веса определенного размера медного проката, площадь его поперечного сечения умножается на удельный вес и на длину.

Единицы измерения удельного веса

Чтобы измерить удельный вес медных и других сплавов могут использоваться следующие еденицы измерения:

в системе СГС - 1 дин/см 3 ,

в системе СИ - 1 н/м 3 ,

в системе МКСС - 1 кГ/м 3 .

Данные единицы связаны между собой определённым соотношением, которое выглядит так:

0,1 дин/см 3 = 1 н/м3 = 0,102 кГ/м 3 .

Способы расчёт удельного веса меди

1. Использование специального на нашем сайте,

2. Расчёт при помощи формул, площади поперечного сечения проката, а затем умножение на удельный вес марки и на длинну.

Пример 1: расчитаем вес медных листов толщиной 4 мм, размером 1000х2000 мм в количестве 24 штуки из медного сплава М2

Посчитаем объем одного листа V = 4·1000·2000 = 8000000 мм 3 = 8000 см 3

Зная, что удельный вес 1 см 3 меди марки М3 = 8,94 гр/см 3

Посчитаем вес одного листа проката M = 8,94·8000 = 71520 гр = 71,52 кг

Итого масса всего проката М = 71,52·24 = 1716,48 кг

Пример 2: расчитаем вес медного прутка Д 32 мм общей длиной 100 метров из медно-никелевого сплава МНЖ5-1

Площадь сечения прутка диаметром 32 мм S=πR 2 значит S=3,1415·16 2 =803,84 мм 2 = 8,03 см 2

Определим вес всего проката, зная что удельный вес медно-никелевого сплава МНЖ5-1 = 8,7 гр/см 3

Итого М = 8,0384·8,7·10000=699340,80 грамм = 699,34 кг

Пример 3: расчитаем вес медного квадрата со стороной 20 мм длиной 7,4 метра из медного жаропрочного сплава БрНХК

Найдем объем проката V = 2·2·740 = 2960 см 3

Плотность меди (чистой), поверхность которой имеет красноватый, а в изломе розоватый оттенок, высока. Соответственно, этот металл обладает и значительным удельным весом. Благодаря своим уникальным свойствам, в первую очередь отличной электро- и , медь активно используется для производства элементов электронных и электрических систем, а также изделий другого назначения. Кроме чистой меди, большое значение для многих отраслей промышленности имеют и ее минералы. Несмотря на то что в природе таких минералов существует более 170-ти видов, активное применение нашли только 17 из них.

Значение плотности меди

Плотность данного металла, которую можно посмотреть в специальной таблице, имеет значение, равное 8,93*10 3 кг/м 3 . Также в таблице можно увидеть и другую, не менее важную, чем плотность, характеристику меди: ее удельный вес, который тоже равен 8,93, но измеряется в граммах на см 3 . Как видите, у меди значение этого параметра совпадает со значением плотности, но не стоит думать, что это характерно для всех металлов.

Плотность этого, да и любого другого металла, измеряемая в кг/м 3 , напрямую влияет на то, какой массой будут обладать изделия, изготовленные из данного материала. Но для определения массы будущего изделия, изготовленного из меди или из ее сплавов, к примеру, из латуни, удобнее пользоваться значением их удельного веса, а не плотности.

Расчет удельного веса

На сегодняшний день разработано множество методик и алгоритмов измерения и расчета не только плотности, но и удельного веса, позволяющих даже без помощи таблиц определять этот важный параметр. Зная удельный вес, который у разных и чистого металла отличается, как и значение плотности, можно эффективно подбирать материалы для производства деталей с заданными параметрами. Такие мероприятия очень важно выполнять на стадии проектирования устройств, в составе которых планируется использовать детали, изготовленные из меди и ее сплавов.

Удельный вес, значение которого (как и плотности) можно посмотреть и в таблице - это отношение веса изделия, изготовленного как из металла, так и из любого другого однородного материала, к его объему. Выражается это отношение формулой γ=P/V, где буквой γ как раз и обозначается удельный вес.

Нельзя путать удельный вес и плотность, которые являются разными характеристиками металла по своей сути, хоть и обладают одинаковым значением для меди.

Зная удельный вес меди и используя формулу для расчета этой величины γ=P/V, можно определить массу медной заготовки, имеющей различной сечение. Для этого необходимо перемножить значение удельного веса для меди и объем рассматриваемой заготовки, определить который расчетным путем не представляет особой сложности.

Единицы измерения удельного веса

Для выражения удельного веса меди в различных системах измерения используются различные единицы.

  • В системе СГС данный параметр измеряется в 1 дин/см 3 .
  • В системе СИ принята единица измерения 1н/м 3 .
  • В системе МКСС используется единица измерения 1 кГ/м 3 .

Если вы столкнулись с различными единицами измерения этого параметра меди или ее сплавов, то не представляет сложности перевести их друг в друга. Для этого можно использовать простую формулу перевода, которая выглядит следующим образом: 0,1 дин/см 3 = 1 н/м 3 = 0,102 кГ/м 3 .

Расчет веса с использованием значения удельного веса

Чтобы вычислить вес заготовки, нужно определить площадь ее поперечного сечения, а затем умножить его на длину детали и на удельный вес.

Пример 1:

Рассчитаем вес прутка из медно-никелевого сплава МНЖ5-1, диаметр которого составляет 30 миллиметров, а длина — 50 метров.

Площадь сечения вычислим по формуле S=πR 2 , следовательно: S = 3,1415 · 15 2 = 706,84 мм 2 = 7,068 см 2

Зная удельный вес медно-никелевого сплава МНЖ5-1, который равен 8,7 гр/см 3 , получим: М = 7,068 · 8,7 · 5000 = 307458 грамм = 307,458 кг

Пример 2

Вычислим вес 28-ми листов из медного сплава М2, толщина которых составляет 6 мм, а размеры 1500х2000 мм.

Объем одного листа составит: V = 6 · 1500 · 2000 = 18000000 мм 3 = 18000 см 3

Теперь, зная, что удельный вес 1 см 3 меди марки М3 равен 8,94 гр/см 3 , можем узнать вес одного листа: M = 8,94 · 18000 = 160920 гр = 160,92 кг

Масса всех 28-ми листов проката составит: М = 160,92 · 28 = 4505,76 кг

Пример 3:

Вычислим вес прута квадратного сечения из медного сплава БрНХК длиной 8 метров и размер стороны 30 мм.

Определим объем всего проката: V = 3 · 3 · 800 = 7200 см 3

Удельный вес указанного жаропрочного сплава равен 8,85 гр/см 3 , следовательно общий вес проката составит: М = 7200 · 8,85 = 63720 грамм = 63,72 кг

ОПРЕДЕЛЕНИЕ

В свободном виде алюминий представляет собой серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Алюминий характеризуется большой тягучестью и высокой электропроводностью, составляющей приблизительно 0,6 электропроводности меди. С этим связано его использование в производстве электрических проводов (которые при сечении, обеспечивающем равную электропроводность, вдвое легче медных). Важнейшие константы алюминия представлены в таблице ниже:

Таблица 1. Физические свойства и плотность алюминия.

Распространенность алюминия в природе

Краткое описание химических свойств и плотность алюминия

При накаливании мелко раздробленного алюминия он энергично сгорает на воздухе. Аналогично протекает и взаимодействие его с серой. С хлором и бромом соединение происходит уже при обычной температуре, с иодом - при нагревании. При очень высоких температурах алюминий непосредственно соединяется также с азотом и углеродом. Напротив, с водородом он не взаимодействует.

4Al + 3O 2 = 2Al 2 O 3 ;

2Al + 3F 2 = 2AlF 3 (t o = 600 o C);

2Al + 3Cl 2 = 2AlCl 3 ;

2Al + 2S = Al 2 S 3 (t o = 150 - 200 o C);

2Al + N 2 = 2AlN (t o = 800 - 1200 o C);

4Al + P 4 = 4AlPt o = 500 - 800 o C, в атмосфере H 2);

4Al + 3C = Al 4 C 3 (t o = 1500 - 1700 o C).

По отношению к воде алюминий практически вполне устойчив. Сильно разбавленные, а также очень концентрированные растворы азотной и серной кислот на алюминий почти не действуют, тогда как при средних концентрациях этих кислот он постепенно растворяется.

2Al + 6HCl = 2AlCl 3 + 3H 2 ;

8Al + 30HNO 3 = 8Al(NO 3) 3 + 3N 2 O + 15H 2 O.

По отношению к уксусной и ортофосфорной кислотам алюминий устойчив. Чистый металл довольно устойчив также и по отношению к соляной кислоте, но обычный технический в ней растворяется. Алюминий легко растворим в сильных щелочах:

2Al + 2NaOH + 6H 2 O = 3H 2 + 2Na.

Примеры решения задач

ПРИМЕР 1

Задание Вычислите плотность по водороду смеси 25 л азота и 175 л кислорода.
Решение Найдем объемные доли веществ в смеси:

j = V gas / V mixture_gas ;

j (N 2) = V(N 2) / V mixture_gas ;

j (N 2) = 25 / (25 + 175) = 25 / 200 = 0,125.

j (O) = V(O 2) / V mixture_gas ;

j (O 2) = 175 / (25 + 175) = 175 / 200 = 0,875.

Объемные доли газов будут совпадать с молярными, т.е. с долями количеств веществ, это следствие из закона Авогадро. Найдем условную молекулярную массу смеси:

M r conditional (mixture) = j (N 2) ×M r (N 2) + j (O 2) ×M r (O 2);

M r conditional (mixture) = 0,125 × 28 + 0,875 × 32 = 3,5 + 28 = 31,5.

Найдем относительную плотность смеси по водороду:

D H2 (mixture) = M r conditional (mixture) / M r (H 2);

D H 2 (mixture) = 31,5 / 2 = 15,75.

Ответ Плотность по водороду смеси, состоящей из азота и кислорода равна 15,75.

ПРИМЕР 2

Задание Рассчитайте плотности газов водорода H 2 и метана CH 4 по воздуху.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (H 2) = M r (H 2) / M r (air);

D air (H 2) = 2 / 29 = 0,0689.

M r (H 2) = 2 ×A r (H) = 2 × 1 = 2.

D air (CH 4) = M r (CH 4) / M r (air);

D air (CH 4) = 16 / 29 = 0,5517.

M r (CH 4) = A r (С) + 4 ×A r (H) = 12 + 4 × 1 = 12 + 4 = 16.

Ответ Плотности газов водорода H 2 и метана CH 4 по воздуху равны 0,5517 и 16 соответственно.

Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения плотности в таблице соответствует указанным температурам, допускается интерполяция данных.

Множество веществ способны находится в жидком состоянии. Жидкости – вещества различного происхождения и состава, которые обладают текучестью, — они способны изменять свою форму под действием некоторых сил. Плотность жидкости – это отношение массы жидкости к объёму, который она занимает.

Рассмотрим примеры плотности некоторых жидкостей. Первое вещество, которое приходит в голову при слове «жидкость» — это вода. И это вовсе не случайно, ведь вода является самой распространённой субстанцией на планете, и поэтому её можно принять за идеал.

Равна 1000 кг/м 3 для дистиллированной и 1030 кг/м 3 для морской воды. Поскольку данная величина тесно взаимосвязана с температурой, стоит отметить, что данное «идеальное» значение получено при +3,7°С. Плотность кипящей воды будет несколько меньше – она равна 958,4 кг/м 3 при 100°С. При нагревании жидкостей их плотность, как правило, уменьшается.

Плотность воды близка по значению различным продуктам питания. Это такие продукты, как: раствор уксуса, вино, 20%-ные сливки и 30%-ная сметана. Отдельные продукты оказываются плотнее, к примеру, яичный желток — его плотность равна 1042 кг/м 3 . Плотнее воды оказывается, например, : ананасовый сок – 1084 кг/м 3 , виноградный сок – до 1361 кг/м 3 , апельсиновый сок — 1043 кг/м 3 , кока-кола и пиво – 1030 кг/м 3 .

Многие вещества по плотности уступают воде. К примеру, спирты оказываются гораздо легче воды. Так плотность равняется 789 кг/м 3 , бутилового – 810 кг/м 3 , метилового — 793 кг/м 3 (при 20°С). Отдельные виды топлива и масла обладают ещё более низкими значениями плотности: нефть — 730-940 кг/м 3 , бензин — 680-800 кг/м 3 . Плотность керосина составляет около 800 кг/м 3 , — 879 кг/м 3 , мазута – до 990 кг/м 3 .

Плотность жидкостей — таблица при различных температурах
Жидкость Температура,
°С
Плотность жидкости,
кг/м 3
Анилин 0…20…40…60…80…100…140…180 1037…1023…1007…990…972…952…914…878
(ГОСТ 159-52) -60…-40…0…20…40…80…120 1143…1129…1102…1089…1076…1048…1011
Ацетон C 3 H 6 O 0…20 813…791
Белок куриного яйца 20 1042
20 680-800
7…20…40…60 910…879…858…836
Бром 20 3120
Вода 0…4…20…60…100…150…200…250…370 999,9…1000…998,2…983,2…958,4…917…863…799…450,5
Вода морская 20 1010-1050
Вода тяжелая 10…20…50…100…150…200…250 1106…1105…1096…1063…1017…957…881
Водка 0…20…40…60…80 949…935…920…903…888
Вино крепленое 20 1025
Вино сухое 20 993
Газойль 20…60…100…160…200…260…300 848…826…801…761…733…688…656
20…60…100…160…200…240 1260…1239…1207…1143…1090…1025
ГТФ (теплоноситель) 27…127…227…327 980…880…800…750
Даутерм 20…50…100…150…200 1060…1036…995…953…912
Желток яйца куры 20 1029
Карборан 27 1000
20 802-840
Кислота азотная HNO 3 (100%-ная) -10…0…10…20…30…40…50 1567…1549…1531…1513…1495…1477…1459
Кислота пальмитиновая C 16 H 32 O 2 (конц.) 62 853
Кислота серная H 2 SO 4 (конц.) 20 1830
Кислота соляная HCl (20%-ная) 20 1100
Кислота уксусная CH 3 COOH (конц.) 20 1049
Коньяк 20 952
Креозот 15 1040-1100
37 1050-1062
Ксилол C 8 H 10 20 880
Купорос медный (10%) 20 1107
Купорос медный (20%) 20 1230
Ликер вишневый 20 1105
Мазут 20 890-990
Масло арахисовое 15 911-926
Масло машинное 20 890-920
Масло моторное Т 20 917
Масло оливковое 15 914-919
(рафинир.) -20…20…60…100…150 947…926…898…871…836
Мед (обезвоженный) 20 1621
Метилацетат CH 3 COOCH 3 25 927
20 1030
Молоко сгущенное с сахаром 20 1290-1310
Нафталин 230…250…270…300…320 865…850…835…812…794
Нефть 20 730-940
Олифа 20 930-950
Паста томатная 20 1110
Патока вареная 20 1460
Патока крахмальная 20 1433
ПАБ 20…80…120…200…260…340…400 990…961…939…883…837…769…710
Пиво 20 1008-1030
ПМС-100 20…60…80…100…120…160…180…200 967…934…917…901…884…850…834…817
ПЭС-5 20…60…80…100…120…160…180…200 998…971…957…943…929…902…888…874
Пюре яблочное 0 1056
(10%-ный) 20 1071
Раствор поваренной соли в воде (20%-ный) 20 1148
Раствор сахара в воде (насыщенный) 0…20…40…60…80…100 1314…1333…1353…1378…1405…1436
Ртуть 0…20…100…200…300…400 13596…13546…13350…13310…12880…12700
Сероуглерод 0 1293
Силикон (диэтилполисилоксан) 0…20…60…100…160…200…260…300 971…956…928…900…856…825…779…744
Сироп яблочный 20 1613
Скипидар 20 870
(жирность 30-83%) 20 939-1000
Смола 80 1200
Смола каменноугольная 20 1050-1250
Сок апельсиновый 15 1043
Сок виноградный 20 1056-1361
Сок грейпфрутовый 15 1062
Сок томатный 20 1030-1141
Сок яблочный 20 1030-1312
Спирт амиловый 20 814
Спирт бутиловый 20 810
Спирт изобутиловый 20 801
Спирт изопропиловый 20 785
Спирт метиловый 20 793
Спирт пропиловый 20 804
Спирт этиловый C 2 H 5 OH 0…20…40…80…100…150…200 806…789…772…735…716…649…557
Сплав натрий-калий (25%Na) 20…100…200…300…500…700 872…852…828…803…753…704
Сплав свинец-висмут (45%Pb) 130…200…300…400…500..600…700 10570…10490…10360…10240…10120..10000…9880
жидкое 20 1350-1530
Сыворотка молочная 20 1027
Тетракрезилоксисилан (CH 3 C 6 H 4 O) 4 Si 10…20…60…100…160…200…260…300…350 1135…1128…1097…1064…1019…987…936…902…858
Тетрахлордифенил C 12 H 6 Cl 4 (арохлор) 30…60…150…250…300 1440…1410…1320…1220…1170
0…20…50…80…100…140 886…867…839…810…790…744
Топливо дизельное 20…40…60…80…100 879…865…852…838…825
Топливо карбюраторное 20 768
Топливо моторное 20 911
Топливо РТ 836…821…792…778…764…749…720…692…677…648
Топливо Т-1 -60…-40…0…20…40…60…100…140…160…200 867…853…824…819…808…795…766…736…720…685
Топливо Т-2 -60…-40…0…20…40…60…100…140…160…200 824…810…781…766…752…745…709…680…665…637
Топливо Т-6 -60…-40…0…20…40…60…100…140…160…200 898…883…855…841…827…813…784…756…742…713
Топливо Т-8 -60…-40…0…20…40…60…100…140…160…200 847…833…804…789…775…761…732…703…689…660
Топливо ТС-1 -60…-40…0…20…40…60…100…140…160…200 837…823…794…780…765…751…722…693…879…650
Углерод четыреххлористый (ЧХУ) 20 1595
Уроторопин C 6 H 12 N 2 27 1330
Фторбензол 20 1024
Хлорбензол 20 1066
Этилацетат 20 901
Этилбромид 20 1430
Этилиодид 20 1933
Этилхлорид 0 921
Эфир 0…20 736…720
Эфир Гарпиуса 27 1100

Низкими показателями плотности отличаются такие жидкости, как: скипидар 870 кг/м 3 ,

ОПРЕДЕЛЕНИЕ

Плотность вещества - это отношение его массы к объему:

M / V, [г/см 3 , кг/м 3 ]

Плотность твердого вещества - это справочная величина. Плотность меди равна 9,0 г/см 3 . В элементарном состоянии медь представляет собой металл красного цвета (рис.1). Её важнейшие константы представлены в таблице ниже:

Таблица 1. Физические свойства меди.

Медь характеризуется значительной плотностью, довольно высокой температурой плавления и малой твердостью. Её тягучесть и ковкость исключительно велика: медь можно вытянуть в проволоку диаметром в 0,001 мм (примерно в 50 раз тоньше человеческого волоса).

Рис. 1. Медь. Внешний вид.

Нахождение меди в природе

По распространенности в природе медь стоит далеко позади соответствующих щелочных металлов. Её содержание в земной коре оценивается величиной порядка 0,003% (масс.). Медь встречается главным образом в виде сернистых соединений и чаще совместно с сернистыми рудами других металлов. Из отдельных минералов меди наиболее важны халькопирит (CuFeS 2) и халькозин (Cu 2 S). Гораздо меньшее промышленное значение имеют кислородсодержащие минералы - куприт (Cu 2 O) и малахит ((CuOH) 2 CO 3).

Краткое описание химических свойств и плотность меди

Медь образует сплавы со многими металлами. В частности, она сплавляется с золотом, серебром и ртутью.

Химическая активность меди невелика. На воздухе она постоянно покрывается плотной зеленовато-серой пленкой основных углекислых солей. Соединяется с кислородом под обычным давлением и при нагревании:

4Cu + O 2 = 2CuO;

2Cu + O 2 = 2CuO.

Не реагирует с водородом, азотом и углеродом даже при высоких температурах.

При обычной температуре медь медленно соединяется с галогенами хлором, бромом и йодом:

Cu + Cl 2 = CuCl 2 ;

Cu + Br 2 = CuBr 2 .

Медь - слабый восстановитель; не реагирует с водой и разбавленной хлороводородной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода или цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», халькогенами и оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Примеры решения задач

ПРИМЕР 1

Задание При действии на смесь меди и железа массой 20 г избытком соляной кислоты выделилось 5,6 л газа (н.у.). Определить массовые доли металлов в смеси.
Решение Медь не реагирует с соляной кислотой, поскольку стоит в ряду активности металлов после водорода, т.е. выделение водорода происходит только в результате взаимодействия кислоты с железом.

Запишем уравнение реакции:

Fe + 2HCl = FeCl 2 + H 2 .

Найдем количество вещества водорода:

n(H 2) = V(H 2) /V_m = 5,6 / 22,4 = 0,25 моль.

Согласно уравнению реакции:

n(H 2) = n(Fe) = 0,25 моль.

Найдем массу железа:

m(Fe)=n(Fe) ×M(Fe) = 0,25 × 56 = 14 г.

Рассчитаем массовые доли металлов в смеси:

w (Fe) = m(Fe) / m mixture = 14 / 20 = 0,7 = 70%.

w(Cu) = 100% - w(Fe) =100 - 70 = 30%.

Ответ Массовая доля железа в сплаве составляет 70%, меди - 30%.